Mini Homework 3

Name: - Math 117 - Summer 2022

1) (2 points) Let V be a finite dimensional vector space and $W \subseteq V$ a subspace. Prove that W has a complimentary subspace

Solution:

2) (2 points) Let Let V be a finite dimensional vector space and $W \subseteq V$ a subspace. Recall the relation \sim_W we defined on V:

$$x \sim_W y \iff x - y \in W$$

Prove that this is an Equivalence relation

Solution:

3) Let V be a vector space over \mathbb{F}

- (a) (1 point) Let $U \subset V$ be a subspace. What is U + U? What is $\{0_V\} + U$?
- (b) (2 points) Prove or disprove with a counterexample the following claim: If we have subspaces W_1, W_2, U of V such that

$$W_1 + U = W_2 + U$$

then we must have $W_1 = W_2$

Solution:

4) Let I = (π, π) be the open interval and consider the \mathbb{R} vector space

Diff $(I, \mathbb{R}) = \{ f : I \to \mathbb{R} : f \text{ is differentiable for all } t \in I \}$

Consider the two subsets

$$Even(I, \mathbb{R}) = \{ f \in Diff(I, \mathbb{R}) : f(t) = f(-t) \text{ for all } t \in I \}$$
$$Odd(I, \mathbb{R}) = \{ f \in Diff(I, \mathbb{R}) : f(t) = -f(-t) \text{ for all } t \in I \}$$

- (a) (1 point) Prove that $Even(I, \mathbb{R})$, and $Odd(I, \mathbb{R})$ are subspaces
- (b) (2 points) Prove that Diff $(I, \mathbb{R}) = \text{Even}(I, \mathbb{R}) \oplus \text{Odd}(I, \mathbb{R})$

Solution: